20 research outputs found

    Approximation Algorithm for Line Segment Coverage for Wireless Sensor Network

    Full text link
    The coverage problem in wireless sensor networks deals with the problem of covering a region or parts of it with sensors. In this paper, we address the problem of covering a set of line segments in sensor networks. A line segment ` is said to be covered if it intersects the sensing regions of at least one sensor distributed in that region. We show that the problem of finding the minimum number of sensors needed to cover each member in a given set of line segments in a rectangular area is NP-hard. Next, we propose a constant factor approximation algorithm for the problem of covering a set of axis-parallel line segments. We also show that a PTAS exists for this problem.Comment: 16 pages, 5 figures

    An exercise in fault-containing: self-stabilizing leader election

    No full text
    Abstract Self-stabilizing algorithms are designed to guarantee convergence to some desired stable state from arbitrary initial states arising out of an arbitrarily large number of faults. However, in a well-designed system, the simultaneous occurrence of a large number of faults is rare. It is therefore desirable to design algorithms that are not only self-stabilizing, but also have the ability to recover very fast from a bounded number of faults. As an illustration, we present a simple self-stabilizing leader election protocol that recovers in 0( 1) time from a state with a single transient fault on oriented rings, Only the faulty node and its two neighbors change their state during convergence to a stable state. Thus, the effect of a single fault is tightly contained around the fault. The technique for transforming a self-stabilizing algorithm into its fault-contained version is simple and general, and can be applied to other problems as well that satisfy certain properties
    corecore